آموزش جبر خطی و هندسه 3

Linear Algebra and Geometry 3

نکته: آخرین آپدیت رو دریافت میکنید حتی اگر این محتوا بروز نباشد.
نمونه ویدیوها:
توضیحات دوره: فضاهای محصول درونی، فرم های درجه دوم، و حل مسائل پیشرفته تر نحوه حل مسائل در جبر خطی و هندسه (نشان داده شده با 144 مسئله حل شده) و چرایی کارکرد این روش ها. حل مسائل پیشرفته تر در مورد تجزیه ویژه و متعامد نسبت به دوره دوم. از مورب سازی ماتریس ها برای حل مسائل مختلف از شاخه های مختلف ریاضیات (ODE، سیستم های دینامیکی) استفاده کنید. فضاهای محصول داخلی متفاوت از R^n: فضای توابع پیوسته، فضاهای چند جمله ای ها، فضاهای ماتریس ها. با مفاهیم هندسی مانند طول (هنجار)، فاصله، زاویه و متعامد در تنظیمات غیر هندسی کار کنید. قضیه فیثاغورث، نابرابری کوشی-شوارتز، و نابرابری مثلث در فضاهای محصول داخلی مختلف. پایه های متعامد و متعامد و فرآیند گرم اشمیت در فضاهای مختلف محصول داخلی. مسائل حداقل حداکثر با استفاده از نابرابری کوشی-شوارتز، قضیه بهترین تقریب، راه حل های حداقل مربعات. ماتریس های متقارن و خواص آنها. مورب متعامد: چگونه انجام می شود و چگونه می توان آن را از نظر هندسی فهمید. ماتریس های قطعی مثبت/منفی، ماتریس های نامعین. روش های مختلف برای تعیین قطعیت ماتریس ها اشکال درجه دوم و ارتباط آنها با ماتریس های متقارن: منحصر به فرد بودن این مطابقت و پیامدهای آن هندسه اشکال درجه دوم در دو و سه متغیر: مقاطع مخروطی و سطوح درجه دوم. برخی از مفاهیم جبر انتزاعی: گروه، حلقه، میدان، و ایزومورفیسم. مفهوم فضاهای برداری ایزومورف را درک کنید. تاج گذاری دوره و نتیجه طبیعی همه موضوعات دیگر: تجزیه ارزش مفرد و شبه وارونه ها. توجه: تمام فضاهای برداری که در این دوره مورد بحث قرار می‌گیرند، فضایی روی R هستند (نه روی میدان اعداد مختلط)، و همه ماتریس‌های ما فقط ورودی‌های واقعی دارند. پیش نیازها:ریاضیات دبیرستانی و دبیرستانی (عمدتاً حساب، برخی مثلثات، چند جمله ای) جبر خطی و هندسه 1 (سیستم معادلات، ماتریس ها و دترمینال ها، بردارها و فرآورده های آنها، هندسه تحلیلی خطوط و صفحه ها) و جبر خطی 2 فضاهای برداری، تبدیل های خطی، متعامد، مقادیر ویژه و بردارهای ویژه، قطری) برخی از محاسبات پایه دانش پایه اعداد مختلط (این دوره شامل یک مقدمه کوتاه بر اعداد مختلط است)

جبر خطی و هندسه 3

فضاهای محصول داخلی، فرم های درجه دوم، و حل مسائل پیشرفته تر


فصل 1: تجزیه ویژه، تجزیه طیفی


S1. معرفی دوره

S2. عملگرهای هندسی در صفحه و در 3-فضا

شما یاد خواهید گرفت: استفاده از مقادیر ویژه و بردارهای ویژه عملگرهای هندسی مانند تقارن ها، پیش بینی ها و چرخش ها برای به دست آوردن ماتریس های استاندارد آنها. همچنین درک خود را از تحولات هندسی تقویت خواهید کرد.

S3. حل مشکلات بیشتر؛ فضاهای متفاوت از R^n

می‌آموزید: با تجزیه ویژه ماتریس‌ها برای عملگرهای خطی در فضاهای برداری مختلف کار کنید.

S4. Intermezzo: فضاهای برداری هم شکل

شما خواهید آموخت: در مورد شباهت های خاص بین فضاهای مختلف و نحوه اندازه گیری آنها.

S5. روابط عود، سیستم های دینامیکی، ماتریس های مارکوف

می‌آموزید: کاربردهای هیجان‌انگیزتر مقادیر ویژه و قطری‌سازی.

S6. حل سیستم های ODE خطی و حل ODE مرتبه بالاتر

می‌آموزید: سیستم‌های ODE خطی و ODE خطی مرتبه بالاتر را با کمک قطری‌سازی حل کنید.


فصل 2: ​​فضاهای داخلی محصول


S7. محصول داخلی به عنوان تعمیم محصول نقطه

درباره سایر محصولات با ویژگی‌های مشابه به عنوان محصول نقطه‌ای و اینکه چگونه می‌توانند در فضاهای برداری مختلف به نظر برسند، خواهید آموخت.

S8. هنجار، فاصله، زوایا و متعامد بودن در فضاهای محصول داخلی

می‌آموزید: چگونه مفاهیم هندسی را در تنظیمات غیر هندسی تعریف کنید.

S9. پیش بینی ها و فرآیند گرام اشمیت در فضاهای مختلف محصول داخلی

می‌آموزید: فرآیند Gram-Schmidt را در فضاهای محصول داخلی متفاوت از R^n (که قبلاً در قسمت 2 پوشش داده شد) اعمال کنید. با پیش بینی ها در فضاهای فرعی کار کنید.

S10. مسائل حداقل حداکثر، بهترین تقریب ها، و حداقل مربعات

می‌آموزید: با کمک نابرابری کوشی-شوارتز، برخی از مسائل ساده Min-Max را حل کنید، کوتاه‌ترین فاصله را تا فضاهای فرعی در فضاهای IP پیدا کنید، سیستم‌های ناسازگار معادلات خطی را مدیریت کنید.


فصل 3: ماتریس های متقارن و فرم های درجه دوم


S11. قطری کردن ماتریس های متقارن

شما خواهید آموخت: در مورد ویژگی های مختلف خوب ماتریس های متقارن، و در مورد مورب متعامد.

S12. اشکال درجه دوم و طبقه بندی آنها

می‌آموزید: چگونه منحنی‌ها و سطوح درجه دوم را (از نظر هندسی) توصیف و (از معادله آنها) تشخیص دهید.

S13. بهینه سازی محدود

می‌آموزید: چگونه محدوده شکل‌های درجه دوم را در کره‌های واحد (تعمیم‌شده) در R^n تعیین کنید.


فصل 4: فینال بزرگ


S14. تجزیه مقدار مفرد

شما خواهید آموخت: در مورد تجزیه ارزش مفرد: چگونه کار می کند و چرا کار می کند. در مورد شبه معکوس ها.

S15. جمع بندی جبر خطی و هندسه


مطمئن شوید که با استاد خود بررسی کرده اید که چه بخش هایی از دوره برای امتحان نهایی خود نیاز دارید. چنین مواردی از کشوری به کشور دیگر، از دانشگاهی به دانشگاه دیگر متفاوت است، و حتی ممکن است از سالی به سال دیگر در همان دانشگاه متفاوت باشد.


شرح مفصلی از محتوای دوره به همراه تمامی 200 ویدئو و عنوان آنها و با متون تمامی 144 مشکل حل شده در این دوره در فایل منبع ارائه شده است

"001 List_of_all_Videos_and_Problems_Linear_Algebra_and_Geometry_3.pdf"

در ویدیوی 1 ("مقدمه ای بر دوره"). این محتوا در ویدیوی 1 نیز ارائه شده است.


سرفصل ها و درس ها

معرفی Introduction

  • معرفی Introduction

عملگرهای هندسی در صفحه و در فضای 3 Geometrical operators in the plane and in the 3-space

  • تجزیه ویژه، خلاصه Eigendecomposition, recap

  • تجزیه ویژه و عملگرها Eigendecomposition and operators

  • مسئله 1: تقارن خط در صفحه Problem 1: Line symmetry in the plane

  • مسئله 2: برون فکنی در هواپیما Problem 2: Projection in the plane

  • مسئله 3: تقارن در فضای 3 Problem 3: Symmetry in the 3-space

  • مسئله 4: فرافکنی در فضای 3 Problem 4: Projection in the 3-space

  • مسئله 5: فرافکنی در فضای 3 Problem 5: Projection in the 3-space

  • فرمول دیگری از تجزیه ویژه: تجزیه طیفی Another formulation of eigendecomposition: Spectral decomposition

  • قدرت ماتریس ها: دو روش Powers of matrices: Two methods

  • تجزیه طیفی، مسئله 6 Spectral decomposition, Problem 6

  • تجزیه طیفی، مسئله 7 Spectral decomposition, Problem 7

  • تجزیه طیفی، تصویر هندسی، مسئله 8 Spectral decomposition, Geometrical illustration, Problem 8

حل مشکلات بیشتر؛ فضاهای متفاوت از R^n More problem solving; spaces different from R^n

  • تجزیه ویژه، مسئله 1 Eigendecomposition, Problem 1

  • تجزیه ویژه، مسئله 2 Eigendecomposition, Problem 2

  • قدرت ها و ریشه ها، مسئله 3 Powers and roots, Problem 3

  • قدرت ها و ریشه ها، مسئله 4 Powers and roots, Problem 4

  • در فضای چند جمله ای ها، مسئله 5 In the space of polynomials, Problem 5

  • در فضای چند جمله ای ها، مسئله 6 In the space of polynomials, Problem 6

  • در فضای ماتریس ها، مسئله 7 In the space of matrices, Problem 7

اینترمتزو: فضاهای برداری هم شکل Intermezzo: isomorphic vector spaces

  • شما تفاوت را نمی بینید You wouldn’t see the difference

  • فضاهای مختلف با ساختار یکسان Different spaces with the same structure

  • نمونه های بیشتری از فضاهای برداری ایزومورف More examples of isomorphic vector spaces

  • شرط لازم برای فضاهای برداری هم شکل A necessary condition for isomorphic vector spaces

  • شرط لازم و کافی برای فضاهای برداری ایزومورف A necessary and sufficient condition for isomorphic vector spaces

  • چرا تفاوت را نمی بینید Why you don’t see the difference

  • فضاهای هم شکل: مسئله 1 Isomorphic spaces: Problem 1

  • فضاهای هم شکل: مسئله 2 Isomorphic spaces: Problem 2

  • فضاهای هم شکل: مسئله 3 Isomorphic spaces: Problem 3

  • فضاهای برداری، زمینه ها، حلقه ها. هممورفیسم حلقه و هم شکلی Vector spaces, fields, rings; ring homomorphisms and isomorphisms

  • فضاهای برداری، فیلدها، حلقه ها، مسئله 4 Vector spaces, fields, rings, Problem 4

  • فضاهای برداری، فیلدها، حلقه ها، مسئله 5 Vector spaces, fields, rings, Problem 5

روابط عود، سیستم های دینامیکی، ماتریس های مارکوف Recurrence relations, dynamical systems, Markov matrices

  • پیوسته در مقابل گسسته Continuous versus discrete

  • دو مثال معروف از عود Two famous examples of recurrence

  • سیستم های دینامیکی گسسته خطی Linear discrete dynamical systems

  • سیستم معادلات تفاضل، مسئله 1 Systems of difference equations, Problem 1

  • سیستم معادلات تفاضل، مسئله 2 Systems of difference equations, Problem 2

  • سیستم معادلات تفاضل، مسئله 3 Systems of difference equations, Problem 3

  • معادلات اختلاف مرتبه بالاتر، مسئله 4 Higher order difference equations, Problem 4

  • معادلات اختلاف مرتبه بالاتر، مسئله 5 Higher order difference equations, Problem 5

  • معادلات اختلاف مرتبه بالاتر، مسئله 6 Higher order difference equations, Problem 6

  • ماتریس های مارکوف Markov matrices

  • هر ماتریس مارکوف دارای مقدار ویژه 1 است Each Markov matrix has eigenvalue 1

  • بردار حالت پایدار (بردار تعادل)، مسئله 7 Steady-state vector (equilibrium vector), Problem 7

  • ماتریس های مارکوف، مسئله 8، رستوران Markov matrices, Problem 8, Restaurant

  • ماتریس های مارکوف، مسئله 9، مهاجرت Markov matrices, Problem 9, Migration

  • ماتریس های مارکوف، مسئله 10، انتخاب Markov matrices, Problem 10, Election

  • سیستم های دینامیکی، مسئله 11 Dynamical systems, Problem 11

  • کجا بیشتر در مورد این موضوع بخوانید؟ Where to read more on this topic?

حل سیستم های ODE خطی و حل ODE مرتبه بالاتر Solving systems of linear ODE, and solving higher order ODE

  • ODE چیست و قرار است با چه نوع ODE سر و کار داشته باشیم What is an ODE and what kinds of ODE we are going to deal with

  • راه حل های مرتبه اول ODE خطی با ضرایب ثابت Solutions to first order linear ODE with constant coefficients

  • سیستم های ODE خطی مرتبه اول با ضرایب ثابت Systems of first order linear ODE with constant coefficients

  • یک مثال بسیار ساده A very simple example

  • روش The method

  • سیستم ODE، مسئله 1 System of ODE, Problem 1

  • سیستم ODE، مسئله 2 System of ODE, Problem 2

  • سیستم ODE، مسئله 3 System of ODE, Problem 3

  • چگونه با ODE خطی مرتبه بالاتر برخورد کنیم؟ How to deal with higher order linear ODE?

  • راه دیگری برای نگاه کردن به همین مشکل Another way of looking at the same problem

محصول درونی به عنوان تعمیم محصول نقطه ای Inner product as a generalization of dot product

  • بین عینی و انتزاعی Between concrete and abstract

  • محصول نقطه در قسمت 1 Dot product in Part 1

  • محصول نقطه و متعامد در قسمت 2 Dot product and orthogonality in Part 2

  • از R^2 تا فضاهای داخلی محصول From R^2 to inner product spaces

  • فضاهای داخلی محصول Inner product spaces

  • فضای n اقلیدسی Euclidean n-space

  • نکته بسیار مهم در مورد علامت گذاری A very important remark about notation

  • محصولات داخلی و خارجی Inner and outer products

  • حاصل ضرب درونی اقلیدسی وزنی، مسئله 1 Weighted Euclidean inner product, Problem 1

  • ماتریس های جابجا شده را به خاطر دارید؟ Remember transposed matrices?

  • ماتریس های قطعی مثبت Positive definite matrices

  • فرم های درجه دوم و نحوه خواندن آنها Quadratic forms and how to read them

  • محصولات داخلی ماتریس در R^n، مسئله 2 Matrix inner products on R^n, Problem 2

  • ماتریس گرم، مسئله 3 Gram matrix, Problem 3

  • ماتریس گرم، مسئله 4 Gram matrix, Problem 4

  • محصول درونی در فضای توابع پیوسته Inner product in the space of continuous functions

  • ماتریس گرم برای یک محصول داخلی در فضای Pn چند جمله ای ها Gram matrix for an inner product in the space Pn of polynomials

  • دو محصول داخلی در فضای چندجمله‌ای Pn Two inner products on the space of polynomials Pn

  • ارزیابی محصولات داخلی در P2، مسئله 5 The evaluation inner products on P2, Problem 5

  • حاصل ضرب داخلی در فضای m × n ماتریس Inner product in the space of m × n matrices

  • حاصلضرب داخلی در فضای ماتریس های مربعی Inner product in the space of square matrices

  • حاصل ضرب درونی در فضای ماتریس ها، مسئله 6 Inner product in the space of matrices, Problem 6

  • محصول داخلی فروبنیوس؛ حاصلضرب ماتریس هادامارد Frobenius inner product; Hadamard product of matrices

هنجار، فاصله، زوایا و متعامد بودن در فضاهای محصول داخلی Norm, distance, angles, and orthogonality in inner product spaces

  • هنجار در فضاهای محصول داخلی Norm in inner product spaces

  • هندسه عجیب و غریب در فضای اقلیدسی با محصول داخلی وزن دار Weird geometry in the Euclidean space with weighted inner product

  • هنجار ماتریس های فروبنیوس، مسئله 1 Frobenius norm of matrices, Problem 1

  • هنجار در فضای توابع، مسئله 2 Norm in the space of functions, Problem 2

  • فاصله در فضاهای محصول داخلی Distance in inner product spaces

  • فاصله فروبنیوس بین ماتریس ها، مسئله 3 Frobenius distance between matrices, Problem 3

  • فاصله در فضای توابع، مسئله 4 Distance in the space of functions, Problem 4

  • اولین قدم برای تعریف زوایای انتزاعی First step to defining abstract angles

  • نابرابری کوشی-شوارتز، اثبات 1 Cauchy–Schwarz inequality, proof 1

  • نابرابری کوشی-شوارتز، اثبات 2 Cauchy–Schwarz inequality, proof 2

  • نابرابری کوشی-شوارتز در فضای توابع پیوسته Cauchy–Schwarz inequality in the space of continuous functions

  • زوایای فضاهای محصول داخلی Angles in inner product spaces

  • هندسه عجیب تر: زوایای فضاهای محصول داخلی، مسئله 5 More weird geometry: Angles in inner product spaces, Problem 5

  • زوایای فضاهای محصول داخلی، مسئله 6 Angles in inner product spaces, Problem 6

  • متعامد بودن در فضاهای محصول داخلی Orthogonality in inner product spaces

  • متعامد بودن در فضاهای محصول داخلی به محصول داخلی بستگی دارد Orthogonality in inner product spaces depends on inner product

  • متعامد بودن در فضاهای محصول داخلی، مسئله 7 Orthogonality in inner product spaces, Problem 7

  • نابرابری مثلث چیست؟ What is triangle inequality?

  • نابرابری مثلثی در فضاهای محصول داخلی Triangle inequality in inner product spaces

  • قضیه تعمیم یافته فیثاغورث Generalized Theorem of Pythagoras

  • قضیه تعمیم یافته فیثاغورث، مسئله 8 Generalized Theorem of Pythagoras, Problem 8

  • قضیه تعمیم یافته فیثاغورث، مسئله 9 Generalized Theorem of Pythagoras, Problem 9

  • قضیه تعمیم یافته فیثاغورث، مسئله 10 Generalized Theorem of Pythagoras, Problem 10

پیش بینی ها و فرآیند گرم اشمیت در فضاهای مختلف محصول داخلی Projections and Gram–Schmidt process in various inner product spaces

  • متفاوت اما همچنان عالی! Different but still awesome!

  • پایه های ON در فضاهای IP ON bases in IP spaces

  • چرا نرمال سازی در تمام فضاهای IP به یک شکل عمل می کند؟ Why does normalizing work in the same way in all IP spaces?

  • مجموعه های متعارف توابع پیوسته، مسئله 1 Orthonormal sets of continuous functions, Problem 1

  • متمم های متعامد، مسئله 2 Orthogonal complements, Problem 2

  • مجموعه های متعامد به صورت خطی مستقل هستند، مسئله 3 Orthogonal sets are linearly independent, Problem 3

  • مختصات در پایه های متعامد در فضاهای IP Coordinates in orthogonal bases in IP spaces

  • پیش بینی ها و تجزیه متعامد در فضاهای IP Projections and orthogonal decomposition in IP spaces

  • پیش بینی های متعامد در زیرفضاهای یک فضای IP، مسئله 4 Orthogonal projections on subspaces of an IP space, Problem 4

  • پیش بینی های متعامد در زیرفضاهای یک فضای IP، مسئله 5 Orthogonal projections on subspaces of an IP space, Problem 5

  • گرم-اشمیت در فضاهای IP Gram–Schmidt in IP spaces

  • گرم-اشمیت در فضاهای IP، مسئله 6: چند جمله ای های لژاندر Gram–Schmidt in IP spaces, Problem 6: Legendre polynomials

  • گرام اشمیت در فضاهای IP، مسئله 7 Gram–Schmidt in IP spaces, Problem 7

  • محاسبات آسان IP در پایه های ON، مسئله 8 Easy computations of IP in ON bases, Problem 8

مسائل حداقل حداکثر، بهترین تقریب ها و حداقل مربعات Min-max problems, best approximations, and least squares

  • در این بخش In this section

  • حداقل حداکثر، مسئله 1 Min-max, Problem 1

  • حداقل حداکثر، مسئله 2 Min-max, Problem 2

  • حداقل حداکثر، مسئله 3 Min-max, Problem 3

  • حداقل حداکثر، مسئله 4 Min-max, Problem 4

  • حداقل حداکثر، مسئله 5 Min-max, Problem 5

  • نگاهی دیگر به پیش بینی های متعامد به عنوان تبدیل های ماتریسی Another look at orthogonal projections as matrix transformations

  • پیش بینی های متعامد، مسئله 6 Orthogonal projections, Problem 6

  • پیش بینی های متعامد، مسئله 7 Orthogonal projections, Problem 7

  • کوتاه ترین فاصله از یک زیرفضا Shortest distance from a subspace

  • کوتاه ترین فاصله، مسئله 8 Shortest distance, Problem 8

  • کوتاه ترین مسافت، مسئله 9 Shortest distance, Problem 9

  • کوتاه ترین مسافت، مسئله 10 Shortest distance, Problem 10

  • حل پذیری سیستم های معادلات بر حسب فضای ستون Solvability of systems of equations in terms of the column space

  • حل حداقل مربعات و بردار باقیمانده Least squares solution and residual vector

  • چهار فضای ماتریس اساسی و معادله نرمال Four fundamental matrix spaces and the normal equation

  • حداقل مربعات، مسئله 11، با معادله عادی Least squares, Problem 11, by normal equation

  • حداقل مربعات، مسئله 11، با طرح ریزی Least squares, Problem 11, by projection

  • تناسب خط مستقیم حداقل مربعات، مسئله 12 Least squares straight line fit, Problem 12

  • حداقل مربعات، برازش منحنی درجه دوم به داده ها، مسئله 13 Least squares, fitting a quadratic curve to data, Problem 13

قطری کردن ماتریس های متقارن Diagonalization of symmetric matrices

  • پیوند بین ماتریس های متقارن و فرم های درجه دوم، مسئله 1 The link between symmetric matrices and quadratic forms, Problem 1

  • برخی از خواص ماتریس های متقارن Some properties of symmetric matrices

  • بردارهای ویژه مربوط به مقادیر ویژه متمایز برای یک ماتریس متقارن Eigenvectors corresponding to distinct eigenvalues for a symmetric matrix

  • اعداد مختلط: یک تکرار مختصر Complex numbers: a brief repetition

  • مقادیر ویژه برای یک ماتریس متقارن (واقعی) واقعی هستند Eigenvalues for a (real) symmetric matrix are real

  • مورب متعامد Orthogonal diagonalization

  • اگر یک ماتریس به صورت متعامد مورب باشد، متقارن است If a matrix is orthogonally diagonalizable, it is symmetric

  • قضیه طیفی: هر ماتریس متقارن به صورت متعامد قابل قطر است. The Spectral Theorem: Each symmetric matrix is orthogonally diagonalizable

  • مورب متعامد: نحوه انجام آن Orthogonal diagonalization: how to do it

  • مورب متعامد، مسئله 2 Orthogonal diagonalization, Problem 2

  • تجزیه طیفی برای ماتریس های متقارن، مسئله 3 Spectral decomposition for symmetric matrices, Problem 3

  • مورب متعامد، مسئله 4 Orthogonal diagonalization, Problem 4

  • مورب متعامد، مسئله 5 Orthogonal diagonalization, Problem 5

  • مورب متعامد، مسئله 6 Orthogonal diagonalization, Problem 6

  • مورب متعامد، مسئله 7 Orthogonal diagonalization, Problem 7

  • تجزیه طیفی، مسئله 8 Spectral decomposition, Problem 8

  • ماتریس های مثبت و منفی، ماتریس های نیمه معین و نامعین، مسئله 9 Pos and neg definite matrices, semidefinite and indefinite matrices, Problem 9

  • قدرت شگفت انگیز یک ماتریس مورب متعامد The wonderful strength of an orthogonally diagonalized matrix

  • سه تست برای قطعیت ماتریس های متقارن، مسئله 10 Three tests for definiteness of symmetric matrices, Problem 10

  • جذر متقارن ماتریس های مثبت متقارن قطعی. مقادیر منفرد Symmetric square roots of symmetric positive definite matrices; singular values

اشکال درجه دوم و طبقه بندی آنها Quadratic forms and their classification

  • مطابقت بین فرم های درجه دوم و ماتریس های متقارن 1 به 1 است The correspondence between quadratic forms and symmetric matrices is 1-to-1

  • تکمیل مربع منحصر به فرد نیست Completing the square is not unique

  • به چه نوع سؤالاتی می خواهیم پاسخ دهیم What kind of questions we want to answer

  • 163 اشکال درجه دوم در دو متغیر، مسئله 1. 163 Quadratic forms in two variables, Problem 1.

  • اشکال درجه دوم در دو متغیر مسئله 2 Quadratic forms in two variables, Problem 2

  • منحنی های درجه دوم، به طور کلی Quadratic curves, generally

  • منحنی های درجه دوم به صورت مقاطع مخروطی Quadratic curves as conic sections

  • منحنی های درجه دوم بر اساس فاصله. کمترین فاصله از مبدا Quadratic curves by distances; shortest distance from the origin

  • محورهای اصلی؛ کوتاه ترین فاصله از مبدا، مسئله 3 Principal axes; The shortest distance from the origin, Problem 3

  • طبقه بندی فرم های درجه دوم در دو متغیر Classification of quadratic forms in two variables

  • طبقه بندی منحنی ها، مسئله 4 Classification of curves, Problem 4

  • طبقه بندی منحنی ها، مسئله 5 Classification of curves, Problem 5

  • نقش های مختلف ماتریس های متقارن (بازگشت به فیلم های 150 و 168)، مسئله Different roles of symmetric matrices (back to Videos 150 and 168), Problem

  • طبقه بندی منحنی ها، مسئله 7 Classification of curves, Problem 7

  • به طور کلی در مورد سطوح درجه دوم Generally about quadratic surfaces

  • برخی از تصاویر زیبا بر روی سطوح درجه دوم Some nice visuals on quadratic surfaces

  • سطوح درجه دوم، کوتاهترین فاصله، مسئله 8 Quadratic surfaces, shortest distance, Problem 8

  • سطوح درجه دوم، مسئله 9 Quadratic surfaces, Problem 9

  • سطوح درجه دوم، مسئله 10 Quadratic surfaces, Problem 10

  • قانون اینرسی برای اشکال درجه دوم. امضای فرم، مسئله 11 Law of inertia for quadratic forms; Signature of a form, Problem 11

  • چهار روش برای تعیین قطعیت; مسئله 12 Four methods of determining definiteness; Problem 12

بهینه سازی محدود Constrained optimization

  • تئوری این بخش The theory for this section

  • بهینه سازی محدود، مسئله 1 Constrained optimization, Problem 1

  • بهینه سازی محدود، مسئله 2 Constrained optimization, Problem 2

  • بهینه سازی محدود، مسئله 3 Constrained optimization, Problem 3

  • بهینه سازی محدود، مسئله 4 Constrained optimization, Problem 4

The Grand Finale: تجزیه ارزش منفرد و شبه وارونه ها The Grand Finale: Singular Value Decomposition and Pseudoinverses

  • تمام جاده های ما ما را به SVD رساندند All our roads led us to SVD

  • چرا به SVD نیاز داریم؟ Why do we need SVD?

  • ما واقعاً چیزهای زیادی در مورد AT A برای هر ماتریس مستطیلی A می دانیم We know really a lot about AT A for any rectangular matrix A

  • حقایق جدید در مورد AT A: مقادیر ویژه و بردارهای ویژه مقادیر مفرد A New facts about AT A: eigenvalues and eigenvectors Singular values of A

  • پایه های ON که فقط بردارهای ویژه محصولات ماتریس خاصی را شامل می شوند ON-bases containing only eigenvectors of certain matrix products

  • تجزیه ارزش مفرد با اثبات و تفسیر هندسی Singular value decomposition with proof and geometric interpretation

  • SVD، کاهش تجزیه مقدار منفرد، مسئله 1 SVD, reduced singular value decomposition, Problem 1

  • SVD، مسئله 2 SVD, Problem 2

  • حقایق جدید بیشتر در مورد AT A: شش عبارت معادل More new facts about AT A: six equivalent statements

  • حداقل مربعات، SVD، و شبه معکوس (معکوس مور– پنروز) Least squares, SVD, and pseudoinverse (Moore–Penrose inverse)

  • شبه معکوس، مسئله 3 Pseudoinverse, Problem 3

  • SVD و قضیه اساسی جبر خطی SVD and Fundamental Theorem of Linear Algebra

جمع بندی جبر خطی و هندسه Wrap-up Linear Algebra and Geometry

  • جبر خطی و هندسه، جمع بندی Linear Algebra and Geometry, Wrap-up

  • بنابراین، بعدی چیست؟ So, what’s next?

  • سخنان پایانی Final words

موارد اضافی Extras

  • سخنرانی پاداش Bonus Lecture

نمایش نظرات

آموزش جبر خطی و هندسه 3
جزییات دوره
51 hours
201
Udemy (یودمی) Udemy (یودمی)
(آخرین آپدیت)
1,804
5 از 5
دارد
دارد
دارد
جهت دریافت آخرین اخبار و آپدیت ها در کانال تلگرام عضو شوید.

Google Chrome Browser

Internet Download Manager

Pot Player

Winrar

Hania Uscka-Wehlou Hania Uscka-Wehlou

معلم دانشگاه در ریاضیات، PhDI یک ریاضیدان چند زبانه با اشتیاق به آموزش ریاضیات است. من همیشه سعی می‌کنم ساده‌ترین توضیحات ممکن را برای مفاهیم و نظریه‌های ریاضی، تا حد امکان، با تصاویر و با انگیزه‌های هندسی پیدا کنم. من به عنوان مدرس ارشد ریاضیات در دانشگاه اوپسالا (از آگوست 2017 تا آگوست 2019) و در دانشگاه Mälardalen (از آگوست 2019 تا مه 2021) در سوئد کار کردم، اما به کار دائم خود پایان دادم تا بتوانم دوره هایی را برای Udemy ایجاد کنم. زمان. من اصالتاً اهل لهستان هستم که در آنجا ریاضیات نظری خواندم و مدارک آموزشی را در دانشگاه کوپرنیک در تورون (1992-1997) دریافت کردم. قبل از آن، من در یک کلاس ریاضی در دبیرستان "لیسه چهارم" در تورون از یک آموزش ریاضی بسیار دقیق لذت بردم، که زمینه بسیار محکمی برای هر چیز دیگری که بعدا آموختم و تدریس کردم به من داد. پایان نامه دکتری من (2009) در دانشگاه اوپسالا در سوئد با عنوان "خطوط دیجیتال، کلمات استورمیان و کسرهای ادامه دار" بود.