آموزش شبکه های عصبی مصنوعی (ANN) با Keras در پایتون و R

Artificial Neural Networks (ANN) with Keras in Python and R

نکته: آخرین آپدیت رو دریافت میکنید حتی اگر این محتوا بروز نباشد.
نمونه ویدیوها:
توضیحات دوره: یادگیری عمیق و ساخت شبکه های عصبی با استفاده از TensorFlow 2.0 و Keras در Python و R

آنچه یاد خواهید گرفت

  • درک کاملی از شبکه های عصبی مصنوعی (ANN) و یادگیری عمیق داشته باشید
  • استفاده از کتابخانه های Keras و Tensorflow را بیاموزید
  • درک سناریوهای کسب و کار که در آن شبکه های عصبی مصنوعی (ANN) قابل استفاده است
  • ساخت شبکه های عصبی مصنوعی (ANN) در پایتون و R
  • از شبکه های عصبی مصنوعی (ANN) برای پیش بینی استفاده کنید

شما به دنبال یک دوره آموزشی کامل در زمینه یادگیری عمیق با استفاده از Keras و Tensorflow هستید که همه آنچه را که برای ایجاد یک مدل شبکه عصبی در پایتون و R نیاز دارید به شما آموزش دهد، درست است؟

شما دوره مناسب شبکه های عصبی را پیدا کرده اید!

پس از تکمیل این دوره، شما قادر خواهید بود:

  • مشکل تجاری را که می توان با استفاده از مدل های شبکه عصبی حل کرد، شناسایی کنید.

  • درکی واضح از مفاهیم شبکه عصبی پیشرفته مانند Gradient Descent، Forward و Backward Propagation و غیره داشته باشید.

  • مدل های شبکه عصبی را در پایتون و R با استفاده از کتابخانه های Keras و Tensorflow ایجاد کنید و نتایج آنها را تجزیه و تحلیل کنید.

  • مفاهیم یادگیری عمیق را با اطمینان تمرین، بحث و درک کنید

این دوره چگونه به شما کمک خواهد کرد؟

یک گواهی پایان قابل تأیید به همه دانشجویانی که این دوره شبکه های عصبی را می گذرانند ارائه می شود.

اگر شما یک تحلیلگر کسب و کار یا یک مدیر اجرایی هستید، یا دانش آموزی هستید که می خواهید یادگیری عمیق را در مسائل دنیای واقعی کسب و کار بیاموزید و به کار ببرید، این دوره با آموزش برخی از پیشرفته ترین مفاهیم، ​​پایه محکمی برای آن در اختیار شما قرار می دهد. شبکه‌های عصبی و پیاده‌سازی آن‌ها در پایتون بدون ریاضیات زیاد.

چرا باید این دوره را انتخاب کنید؟

این دوره تمام مراحلی را که باید برای ایجاد یک مدل پیش‌بینی با استفاده از شبکه‌های عصبی انجام داد، پوشش می‌دهد.

اکثر دوره‌ها فقط بر آموزش نحوه اجرای تجزیه و تحلیل تمرکز دارند، اما ما معتقدیم که داشتن یک درک نظری قوی از مفاهیم ما را قادر می‌سازد تا یک مدل خوب ایجاد کنیم. و پس از اجرای تجزیه و تحلیل، باید بتوان قضاوت کرد که مدل چقدر خوب است و نتایج را تفسیر کرد تا واقعاً بتواند به کسب و کار کمک کند.

چه چیزی ما را واجد شرایط آموزش به شما می کند؟

این دوره توسط آبیشک و پخراج تدریس می شود. ما به عنوان مدیران شرکت مشاوره گلوبال آنالیتیکس، به کسب‌وکارها کمک کرده‌ایم تا مشکل تجاری خود را با استفاده از تکنیک‌های یادگیری عمیق حل کنند و از تجربیات خود برای گنجاندن جنبه‌های عملی تجزیه و تحلیل داده‌ها در این دوره استفاده کرده‌ایم

ما همچنین خالق برخی از محبوب ترین دوره های آنلاین هستیم - با بیش از 250000 ثبت نام و هزاران بررسی 5 ستاره مانند این:

این خیلی خوب است، من عاشق این واقعیت هستم که تمام توضیحات ارائه شده توسط یک فرد غیر روحانی قابل درک است - جاشوا

با تشکر از نویسنده برای این دوره فوق العاده. شما بهترین هستید و این دوره به هر قیمتی می ارزد. - دیزی

قول ما

آموزش دانش آموزان وظیفه ماست و به آن متعهد هستیم. اگر در مورد محتوای دوره، برگه تمرین یا هر موضوعی مربوط به هر موضوعی سؤالی دارید، همیشه می توانید سؤالی را در دوره ارسال کنید یا برای ما پیام مستقیم ارسال کنید.

فایل‌های تمرین را دانلود کنید، در آزمون تمرینی شرکت کنید و تکالیف را تکمیل کنید

با هر سخنرانی، یادداشت‌های کلاسی پیوست شده است که می‌توانید آن را دنبال کنید. همچنین می توانید برای بررسی درک خود از مفاهیم در آزمون تمرینی شرکت کنید. یک تکلیف عملی نهایی برای شما وجود دارد که یادگیری خود را به صورت عملی پیاده سازی کنید.

چه مواردی در این دوره پوشش داده می شود؟

این دوره تمام مراحل ایجاد یک مدل مبتنی بر شبکه عصبی یعنی یک مدل یادگیری عمیق را برای حل مشکلات تجاری به شما آموزش می دهد.

در زیر محتوای دوره این دوره در ANN آمده است:

  • قسمت 1 - مبانی پایتون و R

    این قسمت شما را با پایتون شروع می کند.

    این قسمت به شما کمک می کند تا محیط پایتون و ژوپیتر را روی سیستم خود راه اندازی کنید و به شما یاد می دهد که چگونه برخی از عملیات اساسی را در پایتون انجام دهید. ما اهمیت کتابخانه های مختلف مانند Numpy، Pandas Seaborn را درک خواهیم کرد.

  • قسمت 2 - مفاهیم نظری

    این بخش به شما درک کاملی از مفاهیم درگیر در شبکه های عصبی می دهد.

    در این بخش با سلول های تک یا پرسپترون ها و نحوه چیدمان پرسپترون ها برای ایجاد یک معماری شبکه آشنا خواهید شد. پس از تنظیم معماری، الگوریتم Gradient descent را برای یافتن مینیمم یک تابع درک می کنیم و یاد می گیریم که چگونه از آن برای بهینه سازی مدل شبکه خود استفاده می شود.

  • قسمت 3 - ایجاد مدل ANN رگرسیون و طبقه بندی در پایتون و R

    در این قسمت نحوه ایجاد مدل های ANN در پایتون را خواهید آموخت.

    این بخش را با ایجاد یک مدل ANN با استفاده از Sequential API برای حل یک مشکل طبقه‌بندی شروع می‌کنیم. ما یاد می گیریم که چگونه معماری شبکه را تعریف کنیم، مدل را پیکربندی کنیم و مدل را آموزش دهیم. سپس عملکرد مدل آموزش دیده خود را ارزیابی می کنیم و از آن برای پیش بینی داده های جدید استفاده می کنیم. ما همچنین یک مشکل رگرسیونی را حل می کنیم که در آن سعی می کنیم قیمت خانه را در یک مکان پیش بینی کنیم. همچنین نحوه ایجاد معماری های ANN پیچیده با استفاده از API عملکردی را پوشش خواهیم داد. در نهایت نحوه ذخیره و بازیابی مدل ها را یاد می گیریم.

    ما همچنین اهمیت کتابخانه‌هایی مانند Keras و TensorFlow را در این بخش درک می‌کنیم.

  • قسمت 4 - پیش پردازش داده

    در این بخش می آموزید که چه اقداماتی باید انجام دهید تا داده ها را برای تجزیه و تحلیل آماده کنید، این مراحل برای ایجاد یک معنادار بسیار مهم هستند.

    در این بخش، با تئوری پایه درخت تصمیم شروع می‌کنیم، سپس موضوعات پیش‌پردازش داده‌ها مانند مقدار گمشده، تبدیل متغیر و تقسیم Test-Train را پوشش می‌دهیم.

در پایان این دوره، اعتماد شما به ایجاد یک مدل شبکه عصبی در پایتون افزایش می یابد. شما درک کاملی از نحوه استفاده از ANN برای ایجاد مدل های پیش بینی و حل مشکلات تجاری خواهید داشت.


ادامه دهید و روی دکمه ثبت نام کلیک کنید، و من شما را در درس 1 می بینم!


به سلامتی

Start-Tech Academy


------------

در زیر برخی از پرسش‌های متداول رایج دانش‌آموزانی که می‌خواهند سفر یادگیری عمیق خود را شروع کنند، آورده شده است-


چرا از پایتون برای یادگیری عمیق استفاده کنیم؟

درک Python یکی از مهارت‌های ارزشمند مورد نیاز برای یک حرفه در یادگیری عمیق است.

اگرچه همیشه اینطور نبوده است، پایتون زبان برنامه نویسی انتخابی برای علم داده است. این یک تاریخچه مختصر است:

در سال 2016، از R در Kaggle، پلتفرم برتر مسابقات علم داده، پیشی گرفت.

در سال 2017، در نظرسنجی سالانه KDNuggets از ابزارهای پرکاربرد دانشمندان داده، از R پیشی گرفت.

در سال 2018، 66 درصد از دانشمندان داده گزارش کردند که از پایتون روزانه استفاده می کنند، که آن را به ابزار شماره یک برای متخصصان تجزیه و تحلیل تبدیل می کند.

کارشناسان یادگیری عمیق انتظار دارند این روند با افزایش توسعه در اکوسیستم پایتون ادامه یابد. و در حالی که سفر شما برای یادگیری برنامه نویسی پایتون ممکن است تازه شروع شده باشد، خوب است بدانید که فرصت های شغلی فراوان (و در حال رشد) نیز هستند.

تفاوت بین داده کاوی، یادگیری ماشینی و یادگیری عمیق چیست؟

به زبان ساده، یادگیری ماشین و داده کاوی از الگوریتم ها و تکنیک های مشابه داده کاوی استفاده می کنند، به جز اینکه انواع پیش بینی ها متفاوت است. در حالی که داده کاوی الگوها و دانش ناشناخته قبلی را کشف می کند، یادگیری ماشین الگوها و دانش شناخته شده را بازتولید می کند - و بیشتر به طور خودکار این اطلاعات را در داده ها، تصمیم گیری ها و اقدامات اعمال می کند.

آموزش عمیق، از سوی دیگر، از قدرت محاسباتی پیشرفته و انواع خاصی از شبکه های عصبی استفاده می کند و آنها را در مقادیر زیادی از داده ها برای یادگیری، درک و شناسایی الگوهای پیچیده به کار می برد. ترجمه خودکار زبان و تشخیص های پزشکی نمونه هایی از یادگیری عمیق هستند.

این دوره برای چه کسانی است:

  • افرادی که به دنبال شغلی در علم داده هستند
  • هر کسی که کنجکاو است در یک بازه زمانی کوتاه بر ANN از سطح مبتدی تسلط یابد

سرفصل ها و درس ها

مقدمه Introduction

  • مقدمه Introduction

  • منابع دوره Course Resources

راه اندازی Python و Jupyter Notebook Setting up Python and Jupyter Notebook

  • نصب پایتون و آناکوندا Installing Python and Anaconda

  • این یک نقطه عطف است! This is a milestone!

  • باز کردن نوت بوک Jupyter Opening Jupyter Notebook

  • مقدمه ای بر ژوپیتر - قسمت 1 Introduction to Jupyter - part 1

  • مقدمه ای بر Jupyter - قسمت 2 Introduction to Jupyter - part 2

  • عملگرهای حسابی در پایتون: مبانی پایتون Arithmetic operators in Python: Python Basics

  • رشته ها در پایتون: اصول پایتون Strings in Python: Python Basics

  • لیست ها، تاپل ها و فهرست ها: اصول پایتون Lists, Tuples and Directories: Python Basics

  • کار با کتابخانه Numpy پایتون Working with Numpy Library of Python

  • کار با Pandas Library of Python Working with Pandas Library of Python

  • کار با کتابخانه Seaborn پایتون Working with Seaborn Library of Python

راه اندازی R Studio و R Crash Course Setting up R Studio and R Crash Course

  • نصب استودیو R و R Installing R and R studio

  • مبانی استودیو R و R Basics of R and R studio

  • بسته ها در R Packages in R

  • وارد کردن داده ها قسمت 1: مجموعه داده های داخلی R Inputting data part 1: Inbuilt datasets of R

  • وارد کردن داده ها قسمت 2: ورود دستی داده ها Inputting data part 2: Manual data entry

  • وارد کردن داده ها قسمت 3: وارد کردن از فایل های CSV یا متنی Inputting data part 3: Importing from CSV or Text files

  • ایجاد بارپلات در R Creating Barplots in R

  • ایجاد هیستوگرام در R Creating Histograms in R

تک سلولی - پرسپترون و نورون سیگموئید Single Cells - Perceptron and Sigmoid Neuron

  • پرسپترون Perceptron

  • توابع فعال سازی Activation Functions

  • پایتون - ایجاد مدل پرسپترون Python - Creating Perceptron model

شبکه های عصبی - انباشتن سلول ها برای ایجاد شبکه Neural Networks - Stacking cells to create network

  • اصطلاحات پایه Basic Terminologies

  • گرادیان نزول Gradient Descent

  • انتشار پشت Back Propagation

مفاهیم مهم: سوالات رایج مصاحبه Important concepts: Common Interview questions

  • چند مفهوم مهم Some Important Concepts

  • امتحان Quiz

پارامترهای مدل استاندارد Standard Model Parameters

  • فراپارامترها Hyperparameters

  • امتحان Quiz

  • امتحان Quiz

تنسورفلو و کراس Tensorflow and Keras

  • کراس و تنسورفلو Keras and Tensorflow

  • نصب Tensorflow و Keras در پایتون Installing Tensorflow and Keras in Python

  • نصب TensorFlow و Keras در R Installing TensorFlow and Keras in R

مجموعه داده برای مسئله طبقه بندی Dataset for classification problem

  • پایتون - مجموعه داده برای مشکل طبقه بندی Python - Dataset for classification problem

  • Python - Normalization و Test-Train split Python - Normalization and Test-Train split

  • R - مجموعه داده، نرمال سازی و تست-ترن R - Dataset, Normalization and Test-Train set

  • اطلاعات بیشتر در مورد تقسیم قطار آزمایشی More about test-train split

Python - ساخت و آموزش مدل Python - Building and training the Model

  • راه های مختلف برای ایجاد ANN با استفاده از Keras Different ways to create ANN using Keras

  • ساخت شبکه عصبی با استفاده از Keras Building the Neural Network using Keras

  • تدوین و آموزش مدل شبکه عصبی Compiling and Training the Neural Network model

  • ارزیابی عملکرد و پیش بینی با استفاده از Keras Evaluating performance and Predicting using Keras

نمایش نظرات

آموزش شبکه های عصبی مصنوعی (ANN) با Keras در پایتون و R
جزییات دوره
10h 57m
43
Udemy (یودمی) Udemy (یودمی)
(آخرین آپدیت)
151,507
4.4 از 5
ندارد
دارد
دارد
جهت دریافت آخرین اخبار و آپدیت ها در کانال تلگرام عضو شوید.

Google Chrome Browser

Internet Download Manager

Pot Player

Winrar

Start-Tech Academy Start-Tech Academy

بیش از 1،700،000+ ثبت نام | 4+ رتبه بندی شده | 160+ CountriesStart-Tech Academy یک شرکت آموزش تجزیه و تحلیل مبتنی بر فناوری است و هدف آن گردآوری شرکتهای تحلیلی و فراگیران علاقه مند است. محتوای آموزشی با کیفیت بالا به همراه کارآموزی و فرصت های پروژه به دانشجویان در شروع سفر Analytics خود کمک می کند. بنیانگذار Abhishek Bansal و Pukhraj Parikh است. Pukhraj که به عنوان مدیر پروژه در یک شرکت مشاوره آنالیز کار می کند ، چندین سال تجربه کار بر روی ابزارها و نرم افزارهای تجزیه و تحلیل را دارد. او در مجموعه های اداری MS ، رایانش ابری ، SQL ، Tableau ، SAS ، Google analytics و Python مهارت دارد. Abhishek قبل از اینکه به فن آوری های یادگیری و آموزش مانند یادگیری ماشین و هوش مصنوعی بپردازد ، به عنوان یک مالک فرآیند اکتساب در یک شرکت مخابراتی پیشرو کار می کرد.